Progressão Geométrica - Tópicos Extras

Carlos Bruno Barbosa Correia

Conteúdo

1	Definições	3
1.1	Sequencias	3
1.2	Progressão Geométrica	3
2	Teoremas Fundamentais	3
2.1	Termo Geral	4
2.2	Teorema do Valor Intermediário	4
2.3	Simetria do Produto	5
3	Soma Dos Termos	5
3.1	Finita	5
3.2	Infinita	6
4	Produto Dos Termos	7
4.1	Finita	7
4.2	Infinita	8
5	Segunda Ordem	9
5.1	Definição Formal	9
5.2	Termo Geral	10
5.3	Propriedades	11
	5.3.1 Teorema do Valor Intermediário	12
	5.3.2 Simetria do Produto	13
5.4	Transformação Logarítmica	13
5.5	Produto dos Termos	15
	5.5.1 Finita	15
	5.5.2 Infinita	15
6	Soma dos Termos	16
7	Análise Exponencial	16
8		17
9	Estruturação em Pirâmide	19

1 Definições 3

1 Definições

1.1 Sequencias

Sequência é todo tipo de função $C\subset\mathbb{N}\to Z$ onde Z pode ser qualquer conjunto numérico e C um subconjunto dos naturais com a seguinte formatação parametrizada

$$C = \{ x \in \mathbb{N} : a \le x \le b, a \in \mathbb{N} \land b \in \mathbb{N} \}$$

Assim, associamos cada elemento de C natural com um elemento do conjunto Z.

Geralmente nos pensamos no conjunto C tendo como parâmetro a=1 e b sendo livre de escolha, podendo até mesmo termos uma sequência infinita pensando num caso específico como

$$C_{\infty} = \{ x \in \mathbb{N} : x > 0 \} = \mathbb{N}$$

Porém caso nossa sequência tenha um número finito de termos (ou seja de um conjunto domínio finito) usaremos a seguinte notação

$$C_n = \{ x \in \mathbb{N} : x \le n \}$$

Agora pensando no conjunto contradomínio Z, nesse artigo usarei apenas $Z = \mathbb{R}$ pois engloba todas as nossas possibilidades ao estudar as PGs.

Portanto, para fins práticos adotaremos a seguinte definição de sequências sobre uma função generalizada s(x)

$$s(x): C_n \to \mathbb{R}$$

 $x \mapsto s(x)$

1.2 Progressão Geométrica

Nós definimos de Progressão Geométrica (ou PG) toda sequência genérica p(x) caso a seguinte condição se satisfaça

$$(\exists q \in \mathbb{R})(\forall x \in C_n) \left(\frac{p(x+1)}{p(x)} = q\right)$$

Dessa definição fica imediato que $p(x) \neq 0$ para todo x em C_n pois se não teríamos um denominador nulo e não queremos nos preocupar com isso.

Numa sequência p(x) finita modelada por uma PG, mais nos importa a sua imagem que a sua estrutura funcional. Dessa forma utilizamos a seguinte notação sequencial para tornar nosso trabalho mais visual

$$p = (p(1), p(2), \dots, p(n))$$

E caso tenhamos uma sequência p(x) infinita modelada por uma PG

$$p = (p(1), p(2), \dots)$$

2 Teoremas Fundamentais

Uma das coisas mais importantes quando se estuda um caso especial de sequência é conhecer seu termo geral, ou seja, conhecer o valor de p(x) por uma função fixa em x.

Para tal irei enunciar a fórmula do termo geral seguido de sua prova por indução completa.

2 Teoremas Fundamentais

2.1 Termo Geral

Teorema 1. Seja p(x) uma PG, a fórmula fixa do seu termo geral em função de x será

$$p(x) = p(1) \cdot q^{x-1}$$

Demonstração. Para p(1) é imediato, já que pela fórmula $p(1) = p(1) \cdot q^{1-1} = p(1)$.

Considerando que para p(k) com $k \in C_n$ seja valido a formula, irei mostrar que por consequência disso para p(k+1) também será válido a fórmula.

$$\begin{cases} p(k) = p(1) \cdot q^{k-1} \\ p(k+1) = p(k) \cdot q \end{cases}$$

$$\therefore p(k+1) = p(1) \cdot q^{k-1} \cdot q = p(1) \cdot q^{k-1+1} = p(1) \cdot q^k$$

Mostrando assim que se vale para p(k) também vale para p(k+1) e portanto provando a fórmula $\forall k \in C_n$.

Poderíamos chegar na mesma fórmula de forma visual, porém nesse caso não será considerado uma prova formalizada

$$p(x) = p(x - 1) \cdot q$$

$$p(x - 1) = p(x - 2) \cdot q$$

$$\dots$$

$$p(2) = p(1) \cdot q$$

$$p(1) = p(1)$$

Vou multiplicar todas essas equações, relembrando que não podemos ter elementos da sequência nulos

$$p(x) \cdot p(x-1) \dots p(2) \cdot p(1) = p(x-1)q \cdot p(x-2)q \dots p(1)q \cdot p(1)$$
$$p(x) \cdot p(x-1) \dots p(2) \cdot p(1) = p(x-1) \cdot q \cdot p(x-2) \cdot q \dots p(1) \cdot q \cdot p(1)$$
$$p(x) = p(1) \cdot q^{x-1}$$

2.2 Teorema do Valor Intermediário

Teorema 2. $p(x - k) \cdot p(x + k) = p(x)^2$

Demonstração. Prova praticamente imediata olhando os termos gerais

$$\begin{cases} p(x-k) = p(1) \cdot q^{x-k-1} \\ p(x+k) = p(1) \cdot q^{x+k-1} \end{cases}$$

$$\therefore p(x-k) \cdot p(x+k) = \left[p(1) \cdot q^{x-k-1} \right] \cdot \left[p(1) \cdot q^{x+k-1} \right]$$

$$= p(1)^2 \cdot q^{(x-k-1+x+k-1)}$$

$$= p(1)^2 \cdot q^{2x-2} = \left[p(1) \cdot q^{x-1} \right]^2 = p(x)^2$$

Para fins práticos geralmente nos importa apenas o caso k=1 pois sabendo p(x-1) e p(x+1) você encontra $|p(x)| = \sqrt{p(x-1) \cdot p(x+1)}$.

3 Soma Dos Termos 5

2.3 Simetria do Produto

Teorema 3. $p(x) \cdot p(y) = k \in \mathbb{R} (\forall x, y \in C_n : x + y = a \in \mathbb{N})$

Demonstração. Para realizar a prova primeiramente y = a - x, e então substituímos isso em $p(x) \cdot p(y)$ para mostrar que retorna uma constante real k.

$$\begin{cases} p(x) = p(1) \cdot q^{x-1} \\ p(a-x) = p(1) \cdot q^{a-x-1} \\ p(x) \cdot p(y) = p(x) \cdot p(a-x) \end{cases}$$
$$\therefore p(x) \cdot p(y) = \left[p(1) \cdot q^{x-1} \right] \cdot \left[p(1) \cdot q^{a-x-1} \right]$$
$$= p(1)^2 \cdot q^{x-1+a-x-1} = p(1)^2 \cdot q^{a-2} = k$$

Essa análise equivale ao que *Gauss* fez enquanto criança para o caso de uma PA de primeira ordem, porém invés da simetria ser pela soma, na PG ela acontece pelo produto.

3 Soma Dos Termos

3.1 Finita

Em alguns casos pode ser útil conhecer como calcular a soma dos termos de uma sequência finita por uma função fixa em n tal qual $n = \mathbf{card}(C_n)$. Chamarei essa função de S(n).

Para o caso de uma PG podemos achar sua expressão por meio de um truque algébrico

$$S(n) = p(1) + p(2) + \dots + p(n)$$

= $p(1) + (p(1) \cdot q) + \dots + (p(1) \cdot q^{n-1})$

Multiplicando a equação acima por q e fazendo a distributiva

$$S(n) \cdot q = (p(1) \cdot q) + (p(1) \cdot q^2) + \dots + (p(1) \cdot q^n)$$

Ai então vamos ter duas equações para poder realizar manipulação entre elas

$$\begin{cases} S(n) = p(1) + (p(1) \cdot q) + \dots + (p(1) \cdot q^{n-1}) \\ S(n) \cdot q = (p(1) \cdot q) + (p(1) \cdot q^2) + \dots + (p(1) \cdot q^n) \end{cases}$$

Subtraindo a segunda equação pela primeira de cima para baixo

$$\begin{split} S(n) \cdot q - S(n) &= \left[(p(1) \cdot q) + (p(1) \cdot q^2) + \dots + (p(1) \cdot q^n) \right] - \left[p(1) + (p(1) \cdot q) + \dots + (p(1) \cdot q^{n-1}) \right] \\ S(n) \cdot q - S(n) &= \left[(p(1) \cdot q) + (p(1) \cdot q^2) + \dots + (p(1) \cdot q^n) \right] - \left[p(1) + (p(1) \cdot q) + \dots + (p(1) \cdot q^{n-1}) \right] \\ & \therefore S(n) (q-1) = p(1) \cdot q^n - p(1) \\ S(n) &= \frac{p(1) \cdot (q^n-1)}{q-1} \end{split}$$

Teorema 4. A soma dos n termos de uma PG finita de razão $q \neq 1$ será dada pela fórmula

$$S(n) = \frac{p(1) \cdot (q^n - 1)}{q - 1}$$

Caso você queira realizar uma prova mais rigorosa desse teorema, basicamente você vai aplicar indução completa sobre $k \in C_n$ genérico até o max $C_n = n$.

3 Soma Dos Termos 6

3.2 Infinita

Até agora apenas calculamos a fórmula para o caso de uma PG finita, e vai ser dela que poderemos deduzir a sua correspondente numa PG infinita com algumas condições iniciais.

É imediato que algumas somas infinitas não irão convergir, como por exemplo

$$p = (2, 4, 8, 16, \dots)$$

Cada vez que você considerar o próximo elemento da sequência a soma vai se distanciar cada vez mais de uma possível estabilização e assim convergência.

Porém há casos, especificamente quando |q| < 1, que a soma infinita irá convergir para um valor real. Para uma validação mais completa da teoria exposta acima seria necessário um estudo em Cálculo de Séries, sobretudo os testes de convergência e suas condições sobre a soma.

Por enquanto será satisfatório apenas trabalhar com a noção de limites para podermos chegar na fórmula desejada

Teorema 5. A soma dos infinitos termos de uma PG infinita, que satisfaz |q| < 1 será dada por

$$S_{\infty} = \frac{p(1)}{1 - q}$$

Demonstração. Como temos uma PG infinita, não existe $max(C_n = \mathbb{N})$ nesse caso, porém queremos saber como a mesma se comporta tomando n suficientemente grande. Dessa forma introduzimos a notação de limites no infinito

$$S_{\infty} = \lim_{n \to \infty} S(n)$$
$$= \lim_{n \to \infty} \frac{p(1) \cdot (q^n - 1)}{q - 1}$$

Utilizando as seguintes propriedades de limites para poder manipularmos melhor a expressão, caso $\exists \lim_{x\to\infty} f(x) \wedge \lim_{x\to\infty} g(x)$

$$\lim_{x \to \infty} f(x) + g(x) = \lim_{x \to \infty} f(x) + \lim_{x \to \infty} g(x)$$

$$\lim_{x \to \infty} f(x) \cdot g(x) = \lim_{x \to \infty} f(x) \cdot \lim_{x \to \infty} g(x)$$

$$\lim_{x \to \infty} c = c$$

Podemos então expandir nossa expressão

$$S_{\infty} = \frac{p(1) \cdot \lim_{n \to \infty} (q^n - 1)}{q - 1}$$
$$= \frac{p(1) \cdot (\lim_{n \to \infty} (q^n) - 1)}{q - 1}$$

Para entender o próximo passo imagine que tenhamos uma função $f(n) = q^n$ no qual |q| < 1, e para facilitar nosso raciocínio ainda mais, 0 < q < 1. Dessa forma, $0 < q < 1 \Rightarrow 0 < q^2 < q < 1 \Rightarrow 0 < q^3 < q^2 < q < 1$, ou seja, as potências de q nesse caso vão se aproximando cada vez mais do zero. Atingindo o zero apenas no caso limite quando temos seu expoente tendendo ao infinito positivo.

4 Produto Dos Termos 7

$$\lim_{n\to\infty} (q^n) = 0$$

Agora só substituir essa conclusão na fórmula já finalizada de S_{∞}

$$S_{\infty} = \frac{p(1) \cdot (0-1)}{q-1} = \frac{-p(1)}{q-1} = \frac{p(1)}{1-q}$$

4 Produto Dos Termos

4.1 Finita

Para eu poder calcular o produto dos termos de uma PG finita, terei que recordar uma fórmula essencial para o estudo das progressões aritméticas.

$$1 + 2 + 3 \cdots + n = \frac{n(n+1)}{2} (\forall n \in \mathbb{N})$$

Vou fazer uma rápida prova visual desse resultado, que se assemelha bastante à como se faz a prova da soma dos termos de uma PA

Demonstração.

$$S = 1 + 2 + 3 + \dots + (n - 2) + (n - 1) + n$$

$$S = n + (n - 1) + (n - 2) + \dots + 3 + 2 + 1$$

Somando de forma organizada S na primeira linha com S da segunda linha

$$\therefore 2S = \underbrace{(n+1) + (n+1) + (n+1) + \dots + (n+1) + (n+1) + (n+1)}_{\text{n termos}}$$

$$2S = n(n+1) \Rightarrow S = \frac{n(n+1)}{2}$$

Conhecendo esse resultado agora podemos mostrar como se encontrar a fórmula do produto dos n termos de uma PG finita, como uma função fixa de n.

Chamando de P(n) o produto desejado montamos a seguinte equação

$$P(n) = p(1) \cdot p(2) \dots p(n-1) \cdot p(n)$$

$$= p(1) \cdot (p(1) \cdot q) \dots (p(1) \cdot q^{n-2}) \cdot (p(1) \cdot q^{n-1})$$

$$= \left(\underbrace{p(1) \cdot p(1) \dots p(1)}_{\text{n termos}}\right) \cdot \left(q \cdot q^2 \cdot \dots \cdot q^{n-2} \cdot q^{n-1}\right)$$

$$= p(1)^n \cdot q^{1+2+\dots+(n-2)+(n-1)}$$

Perceba que temos no expoente de q uma soma bem semelhante à que demonstramos sua fórmula, porém invés de somarmos até n somamos até n-1. Chamando essa soma do expoente de Z obtemos a seguinte expressão

$$Z = \frac{n(n+1)}{2} - n = \frac{n(n+1) - 2n}{2} = \frac{n(n+1-2)}{2}$$

4 Produto Dos Termos 8

$$\therefore Z = \frac{n(n-1)}{2}$$

Finalmente teremos a fórmula do produto dos termos de uma PG finita

$$P(n) = p(1)^n \cdot q^Z$$

Em alguns casos pode ser útil a seguinte variação dessa fórmula, principalmente se você já conhece todos os elementos da sequencia

$$P(n) = p(1)^{n} \cdot q^{\frac{n(n-1)}{2}}$$

$$= (p(1)^{2} \cdot q^{n-1})^{\frac{n}{2}} = (p(1) \cdot p(1) \cdot q^{n-1})^{\frac{n}{2}} = (p(1) \cdot p(n))^{\frac{n}{2}}$$

$$P(n) = \pm \sqrt{[p(1) \cdot p(n)]^{n}}$$

Esse " \pm " ocorre pelo fato de que em alguns casos podemos ter o expoente $\frac{n}{2}$ impar e um radicando negativo.

Teorema 6. Seja p(x) uma PG finita com razão q, temos que o produto dos seus $n = \max C_n$ termos será dada pela fórmula

$$P(n) = p(1)^n \cdot q^{\frac{n(n-1)}{2}}$$

4.2 Infinita

No caso de uma PG infinita, encontramos um resultado muito interessante; nesse caso vamos manter nossa condição necessária e suficiente de |q| < 1.

$$P_{\infty} = \lim_{n \to \infty} p(1)^n \cdot q^Z = \lim_{n \to \infty} p(1)^n \cdot q^{\frac{n(n-1)}{2}}$$

$$= \lim_{n \to \infty} \left(p(1) \cdot q^{\frac{n-1}{2}} \right)^n$$

$$= \left(\lim_{n \to \infty} p(1) \cdot q^{\frac{n-1}{2}} \right)^n$$

$$= \left(\lim_{n \to \infty} p(1) \cdot \lim_{n \to \infty} q^{\frac{n-1}{2}} \right)^n$$

$$= \left(p(1) \cdot \left(\lim_{n \to \infty} q^{n-1} \right)^{\frac{1}{2}} \right)^n$$

Relembrando o argumento intuitivo utilizado na soma de uma PG infinita, podemos dizer que

$$\lim_{n \to \infty} q^{n-1} = 0$$

$$\therefore P_{\infty} = \left(p(1) \cdot 0^{\frac{1}{2}} \right)^n = 0$$

Teorema 7. Seja p(x) uma PG infinita, caso sua razão satisfaça |q| < 1, temos que seu produto P_{∞} será sempre nulo

$$P_{\infty} = 0$$

5 Segunda Ordem

Agora vamos entrar em um assunto bem mais desafiador algebricamente, que são as PGs de segunda ordem. Essencialmente é a mesma ideia das PAs de segunda ordem, porém invés da razão sempre ser somado à uma constante, ela vai ser multiplicada por uma constante.

Para exemplificar o que foi dito irei dar um rápido exemplo numérico de uma PG de segunda ordem, que para facilitar nosso entendimento chamarei de P_2 enquanto a nossa PG tradicional será chamada de P_1 ou simplesmente P.

Seja W uma P_2 podemos ter a seguinte sequência

$$W = (1, 2, 8, 64, \dots, w(n))$$

Irei calcular todas as razões explícitas entre termos consecutivos

$$\frac{w(2)}{w(1)} = 2$$

$$\frac{w(3)}{w(2)} = 4$$

$$\frac{w(4)}{w(3)} = 8$$

Perceba que as razões parciais formam uma P_1 de razão explícita $\phi = 2$.

Portanto para podermos caracterizar uma P_2 completamente iremos precisar saber seu primeiro termo p(1), sua razão inicial q e sua razão das razões parciais ϕ .

Para formalizar melhor o que foi dito, podemos usar o seguinte construtor para uma P_1 de razão q

$$P = P(p(1), q) = P(p_1, q)$$

E o seguinte construtor para uma P_2 de razão inicial q e razão das razões parciais ϕ

$$W = W(w(1), q, \phi) = W(w_1, q, \phi)$$

Observação 1. Para que as notações a seguir não fiquem muito ruins para uma leitura dinâmica, vamos escrever os termos de uma sequencia por s_1 , s_2 invés de s(1) e s(2).

5.1 Definição Formal

Seja W uma sequencia genérica, caso a mesma satisfaça a seguinte sentença podemos a considerar uma P_2

$$(\exists q \in \mathbb{R})(\exists \phi \in \mathbb{R})(\forall x \in C_n) \left(\frac{w_2}{w_1} = q \land \frac{w_x}{w_{x-1}} = \frac{w_{x-1}}{w_{x-2}} \cdot \phi\right)$$

Irei adotar nesse curso prioritariamente definições recursivas quando as mesmas forem solicitadas

5.2 Termo Geral

Vamos perceber nessa sessão que nem sempre encontrar o termo geral de uma sequência conhecida é um trabalho fácil e automatizado.

Seja W(x) uma sequencia genérica P_2

$$W = (w_1, w_2, w_3, \dots, w_n)$$

Expandindo os termos usando o construtor $W = W(w_1, q, \phi)$

$$W = (\underbrace{w_1}_{w_1}, \underbrace{w_1 \cdot q}_{w_2}, \underbrace{w_1 \cdot q \cdot (q \cdot \phi)}_{w_3}, \underbrace{w_1 \cdot q \cdot (q \cdot \phi) \cdot (q \cdot \phi^2)}_{w_4}, \dots, w_n)$$
$$= (\underbrace{w_1}_{w_1}, \underbrace{w_1 \cdot q}_{w_2}, \underbrace{w_1 \cdot q^2 \cdot \phi}_{w_3}, \underbrace{w_1 \cdot q^3 \cdot \phi^3}_{w_4}, \dots, w_n)$$

De forma semelhante ao que sabemos de uma P_1 queremos um termo geral de w_n dado por algo como

$$w_n = w_1 \cdot q^{f(n)} \cdot \phi^{g(n)}$$

Começando com a função f(n) ela é bem simples, pois já a encontrarmos no caso de uma P_1 ; e isso é válido porque sempre multiplicamos o termo anterior por $q^1 = q$.

$$f(n) = n - 1$$

Agora para a função g(n) vamos ter que pensar mais um pouco, pelo fato de que multiplicamos pelo termo anterior ϕ^k , no qual k depende de qual posição estamos falando.

Fazendo uma sequência dos expoentes de ϕ veremos algo como

$$\psi = (0, 0, 1, 3, 6, 10, \dots, \psi_n)$$

Talvez não esteja tão aparente porém temos uma progressão aritmética de segunda ordem na sequencia ψ , a famosa A_2 do meu artigo sobre tópicos extras de PA.

Nesse caso vamos ter um construtor de ψ dado pelo seu primeiro termo ψ_1 , sua razão inicial r, e sua razão das razões parciais ρ , se você prestar atenção conseguimos fazer a seguinte construção

$$\psi = \psi(0,0,1)$$

Vou relembrar a fórmula do termo geral de uma A_2 e em seguida fazer uma prova por indução completa para os curiosos

Teorema 8. Seja ψ uma A_2 com razão inicial r e sua razão das razões parciais ρ , seu termo geral será dado por

$$\psi_n = \psi_1 + (n-1)r + \frac{(n-1)(n-2)}{2}\rho$$

Demonstração. Para os casos base temos que são válidos

$$\begin{cases} \psi_1 = \psi_1 + (0-0)r + \frac{0}{2} = \psi_1 \\ \psi_2 = \psi_1 + (1-0)r + \frac{0}{2} = \psi_1 + r \end{cases}$$

Considerando agora que ela seja válida para ψ_k

$$\psi_k = \psi_1 + (k-1)r + \frac{(k-1)(k-2)}{2}\rho$$

Numa A_2 a partir do segundo termo para obtermos o próximo elemento sempre iremos adicionar r e $(z-2)\rho$ do anterior, onde z é a posição dele.

$$\therefore \psi_{k+1} = \psi_k + r + (k+1-2)\rho = \psi_k + r + (k-1)\rho$$

Utilizando a hipótese de indução, chegamos em

$$\psi_{k+1} = \psi_1 + (k-1+1)r + (k-1) \cdot \left(\frac{(k-2)}{2} + 1\right)\rho$$

$$= \psi_1 + (k-1+1)r + (k-1) \cdot \left(\frac{k-2+2}{2}\right)\rho$$

$$= \psi_1 + kr + (k-1) \cdot \frac{k}{2}\rho$$

Mostrando então que se a fórmula é valida para ψ_k ela também será para ψ_{k+1} , onde k é um natural que vai de 0 até n.

Agora que já demonstramos a fórmula que irei usar basta encontrar o termo geral da nossa $\psi=\psi(0,0,1)$

$$\psi_n = \psi_1 + (n-1)r + \frac{(n-1)(n-2)}{2}\rho$$

$$= 0 + (n-1) \cdot 0 + \frac{(n-1)(n-2)}{2}$$

$$\therefore \psi_n = \frac{(n-1)(n-2)}{2}$$

Como essa é a sequência dos expoentes de ϕ encontramos finalmente qual é a expressão para g(n)

$$g(n) = \frac{(n-1)(n-2)}{2}$$

Com todas essas informações posso finalmente enunciar o termo geral de uma P_2

Teorema 9. Seja W uma P_2 de construtor $W(w_1, q, \phi)$ seu termo geral sera dado por

$$w_n = w_1 \cdot q^{n-1} \cdot \phi^{\frac{(n-1)(n-2)}{2}}$$

Se quisermos provar formalmente esse teorema teríamos que fazer a exata mesma coisa que fizemos para a prova do **Teorema 8**. Porem como eu acabei de faze-la seria algo desgastante e sem benefícios, portanto caso o leitor queira exercitar, convido o mesmo a tentar.

5.3 Propriedades

No caso de uma P_2 vamos ver que temos muitas propriedades equivalentes à existentes numa P_1 , começando com a fórmula do termo geral que acabara de ser apresentada.

5.3.1 Teorema do Valor Intermediário

Pela definição formal de uma P_2 sempre é verdade que

$$\frac{w_{x+1}}{w_x} = \frac{w_x}{w_{x-1}}\phi$$

O termo intermediário entre w_{x-1}, w_x e w_{x+1} é imediatamente w_x

$$w_x^2 = \frac{1}{\phi} w_{x-1} \cdot w_{x+1}$$

$$w_x = \pm \sqrt{\frac{1}{\phi} w_{x-1} \cdot w_{x+1}}$$

Porém esse é o o caso mais básico, para vermos o mais abrangente vamos considerar o intervalo de w_{x-k} até w_{x+k}

$$\begin{cases} w_{x-k} = w_1 \cdot q^{x-k-1} \cdot \phi^{\frac{(x-k-1)(x-k-2)}{2}} \\ w_{x+k} = w_1 \cdot q^{x+k-1} \cdot \phi^{\frac{(x+k-1)(x+k-2)}{2}} \\ w_x = w_1 \cdot q^{x-1} \cdot \phi^{\frac{(x-1)(x-2)}{2}} \end{cases}$$

O que eu busco é encontrar $\psi(x,k)$ de tal forma que

$$w_x^2 = (w_{x-k} \cdot w_{x+k})\psi(x,k)$$

$$\psi(x) = \frac{w_x^2}{w_{x-k} \cdot w_{x+k}}$$

$$=\frac{w_1^2\cdot q^{2x-2}\cdot \phi^{(x-1)(x-2)}}{\left(w_1\cdot q^{x-k-1}\cdot \phi^{\frac{(x-k-1)(x-k-2)}{2}}\right)\cdot \left(w_1\cdot q^{x+k-1}\cdot \phi^{\frac{(x+k-1)(x+k-2)}{2}}\right)}$$

$$=\frac{w_1^2\cdot q^{2x-2}\cdot \phi^{(x-1)(x-2)}}{w_1^2\cdot q^{2x-2}\cdot \phi^{\frac{(x-k-1)(x-k-2)}{2}+\frac{(x+k-1)(x+k-2)}{2}}}$$

$$=\phi^Z$$

Tal que x - 1 = u e x - 2 = v

$$Z = uv - \frac{(u-k)(v-k) + (u+k)(v+k)}{2}$$

$$= uv - \frac{uv - uk - vk + k^2 + uv + uk + vk + k^2}{2}$$

$$= uv - \frac{2uv + 2k^2}{2} = uv - uv - k^2 = -k^2$$

Portanto podemos formalizar $\psi(x,k)$

$$\psi(x,k) = \phi^Z = \phi^{-k^2}$$

$$w_x = \pm \sqrt{\frac{1}{\phi^{k^2}} w_{x-k} \cdot w_{x+k}}$$

O maneiro desse resultado é que se temos uma P_1 o $\phi = 1$ e então obtemos a formula já conhecida e demonstrada anteriormente, além de mostrar que o quanto mais distante em k ficamos do termo intermediário w_x , maior é o produto dos termos equidistantes; provando que não temos uma simetria de equidistância como numa P_1 .

5.3.2 Simetria do Produto

Nesse momento já deve ser óbvio que não há simetria em relação ao produto só pela conclusão anterior, porém para fins técnicos vou fazer uma rápida prova

$$x + y = a \in \mathbb{R} \Rightarrow y = a - x$$

$$w_x \cdot w_y = \left(w_1 \cdot q^{x-1} \cdot \phi^{\frac{(x-1)(x-2)}{2}} \right) \cdot \left(w_1 \cdot q^{a-x-1} \cdot \phi^{\frac{(a-x-1)(a-x-2)}{2}} \right)$$

$$= w_1^2 \cdot q^{a-2} \cdot \phi^{\frac{(x-1)(x-2)+(a-x-1)(a-x-2)}{2}}$$

Se você expandir o expoente de ϕ vai perceber que ele ainda é dependente de a constante, dessa forma a simetria em relação ao produto além de não acontecer, não tem uma fórmula satisfatória para ser utilizada.

5.4 Transformação Logarítmica

Na maioria dos casos é mais simples manipularmos uma A_2 que uma P_2 , portanto vou mostrar um método para encontrar uma sequência aritmética equivalente à uma sequência geométrica.

Vou começar com uma P_2 dada pelo construtor $W(w_1, q, \phi)$

$$W = (w_1, w_1q, w_1q^2\phi + w_1q^3\phi^3 + \dots + w_n)$$

Tirando o logaritmo de cada termo, independente de qual base seja

$$A = (\log w_1, \log w_1 q, \log w_1 q^2 \phi, \log w_1 q^3 \phi^3, \dots, \log w_n)$$

$$A = \left(\underbrace{\log w_1}_{w_1}, \underbrace{\log w_1 + \log q}_{w_2}, \underbrace{\log w_1 + 2\log q + \log \phi}_{w_3}, \underbrace{\log w_1 + 3\log q + 3\log \phi}_{w_4} + \dots + \log w_n\right)$$

Podemos perceber que A vai ser uma A_2 de construtor $A = (a_1, r, \rho) = (\log w_1, \log q, \log \phi)$

$$a_n = \log w_n$$

Relembrando do **Teorema 8**, conseguimos ter a formula do termo geral de A

$$a_n = a_1 + (n-1)r + \frac{(n-1)(n-2)}{2}\rho$$

Substituindo pelos parâmetros do construtor na equação acima

$$a_n = \log w_1 + (n-1)\log q + \frac{(n-1)(n-2)}{2}\log \phi$$

$$\log w_n = \log w_1 + (n-1)\log q + \frac{(n-1)(n-2)}{2}\log \phi$$

É imediato que w_n é uma função de w_1 , q, ρ e n, por sua própria definição formal. Portanto posso dizer que a fórmula mais geral de w_n será

$$w_n = w_1^{f_1(n)} \cdot q^{f_2(n)} \cdot \phi^{f_3(n)}$$
$$\therefore \log \left(w_1^{f_1(n)} \cdot q^{f_2(n)} \cdot \phi^{f_3(n)} \right) = \log w_1 + (n-1)\log q + \frac{(n-1)(n-2)}{2}\log \phi$$

O lado direito posso agrupar utilizando as propriedades conhecidas e já utilizadas de logaritmos

$$\log w_1 + (n-1)\log q + \frac{(n-1)(n-2)}{2}\log \phi = \log(w_1) + \log(q^{n-1}) + \log(\phi^{\frac{(n-1)(n-2)}{2}})$$
$$= \log\left(w_1 \cdot q^{n-1} \cdot \phi^{\frac{(n-1)(n-2)}{2}}\right)$$

Finalmente podemos encontrar o termo geral de uma P_2 utilizando uma A_2 como referência

$$\log \left(w_1^{f_1(n)} \cdot q^{f_2(n)} \cdot \phi^{f_3(n)} \right) = \log \left(w_1 \cdot q^{n-1} \cdot \phi^{\frac{(n-1)(n-2)}{2}} \right)$$

$$\begin{cases} w_1^{f_1(n)} = w_1 \Rightarrow f_1(n) = 1 \\ q^{f_2(n)} = q^{n-1} \Rightarrow f_2(n) = n - 1 \\ \phi^{f_3(n)} = \phi^{\frac{(n-1)(n-2)}{2}} \Rightarrow f_3(n) = \frac{(n-1)(n-2)}{2} \\ \therefore w_n = w_1 \cdot q^{n-1} \cdot \phi^{\frac{(n-1)(n-2)}{2}} \end{cases}$$

Antes de terminar essa parte e irmos adiante gostaria de mostrar uma formalização funcional dessa da transformação logarítmica. Como já dito no início desse paper toda sequencia é um tipo de função de C_n nos \mathbb{R} . Portanto quando encontramos uma sequência equivalente de uma outra, estamos implicitamente fazendo uma transformação matemática, levando uma função na outra.

Chamando de ∇ o transformador de uma P_2 simbolizada por W numa A_2 simbolizada por A, escrevemos a seguinte equação

$$\nabla W = A$$

Esse transformador, que também pode ser chamado de operador, apresenta varias tipologias mas isso não ficará a cargo desse texto.

O que eu quero mostrar é que quando fazemos uma transformação logarítmica como essa, fazemos a de forma sequencial, aplicando o log de base qualquer termo à termo da sequência, para podermos pegar os expoentes de q e de ϕ e manipulá-los numa soma invés de uma potência.

$$\log w_n = a_n$$

Se quiséssemos fazer uma analogia a algo mais prático, poderíamos pensar na sequencia como um vetor de \mathbb{R}^n tal que essa transformação funciona como uma transformação não linear do \mathbb{R}^n no \mathbb{R}^n .

5.5 Produto dos Termos

5.5.1 Finita

Pode parecer estranho eu estar apresentando a seção de Produto dos Termos antes da Soma dos Termos, em relação a isso vai ficar bem mais explicado posteriormente.

Para eu chegar na fórmula do produto dos n termos P(n) de uma P_2 finita simbolizada por W, farei isso usando sua equivalente logarítmica ∇W

$$\nabla W = (\log w_1, \log w_2, \dots, \log w_n)$$

A soma dos n termos da sequência acima vai ser dado por

$$S = \log w_1 + \log w_2 + \dots + \log w_n$$
$$= \log (w_1 \cdot w_2 \dots w_n)$$

Perceba que $w_1 \cdot w_2 \cdot \cdots \cdot w_n$ é o nosso P(n) e já é conhecido no meu paper de tópicos extras de PA a fórmula da soma dos n termos de uma A_2 , a qual irei anunciar a seguir sem uma prova pois a mesma é longa e já fora feita.

Teorema 10. Seja ψ uma A_2 de construtor $\psi = (\psi_1, r, \rho)$, a soma dos seus n termos será dado por

$$S_{\psi} = \psi_1 \cdot n + \frac{n(n-1)}{2} \cdot r + \frac{n(n-1)(n-2)}{6} \cdot \rho$$

Portanto, substituindo os parâmetros do construtor $\nabla W = \nabla W(\log w_1, \log q, \log \phi)$ na fórmula do teorema acima

$$S = \log w_1 \cdot n + \frac{n(n-1)}{2} \cdot \log q + \frac{n(n-1)(n-2)}{6} \cdot \log \rho$$

$$= \log (w_1^n) + \log \left(q^{\frac{n(n-1)}{2}}\right) + \log \left(\phi^{\frac{n(n-1)(n-2)}{6}}\right)$$

$$= \log \left(w_1^n \cdot q^{\frac{n(n-1)}{2}} \cdot \phi^{\frac{n(n-1)(n-2)}{6}}\right)$$

Como $S = \log(P(n))$

$$\log (P(n)) = \log \left(w_1^n \cdot q^{\frac{n(n-1)}{2}} \cdot \phi^{\frac{n(n-1)(n-2)}{6}} \right)$$

$$\therefore P(n) = w_1^n \cdot q^{\frac{n(n-1)}{2}} \cdot \phi^{\frac{n(n-1)(n-2)}{6}}$$

Teorema 11. Seja W uma P_2 de construtor $W(w_1, q, \phi)$ o produto dos seus n termos será dado por

$$P(n) = w_1^n \cdot q^{\frac{n(n-1)}{2}} \cdot \phi^{\frac{n(n-1)(n-2)}{6}}$$

5.5.2 Infinita

O princípio aqui é o mesmo feito para uma P_1 , denotando P_{∞} a soma dos infinitos termos da nossa P_2 infinita W

$$P_{\infty} = \lim_{n \to \infty} \left(w_1^n \cdot q^{\frac{n(n-1)}{2}} \cdot \phi^{\frac{n(n-1)(n-2)}{6}} \right)$$
$$= \left(\lim_{n \to \infty} \left(w_1 \cdot q^{\frac{(n-1)}{2}} \cdot \phi^{\frac{(n-1)(n-2)}{6}} \right) \right)^n$$

6 Soma dos Termos 16

$$= \left(w_1 \cdot \left(\lim_{n \to \infty} \left(q^{\frac{1}{2}} \cdot \phi^{\frac{(n-2)}{6}} \right) \right)^{n-1} \right)^n$$
$$= \left(w_1 \cdot \left(q^{\frac{1}{2}} \cdot \lim_{n \to \infty} \phi^{\frac{(n-2)}{6}} \right)^{n-1} \right)^n$$

O interessante nesse caso que para o cálculo do limite independe se |q| < 1 pois o mesmo se torna uma constante depois desse algebrismo, porém é necessário e suficiente que $|\phi| < 1$ para que o limite acima convirja e seja zero, como já discutimos anteriormente.

$$P_{\infty} = \left(w_1 \cdot \left(q^{\frac{1}{2}} \cdot 0\right)^{n-1}\right)^n = 0$$

Teorema 12. Seja W uma P_2 infinita de construtor $W(w_1, q, \phi)$ que satisfaz $|\phi| < 1$, o produto dos infinitos termos será sempre nulo

$$P_{\infty} = 0$$

O interessante desse tópico é o fato de que independe o valor de q para que o produto tendendo aos infinitos termos seja nulo.

6 Soma dos Termos

Infelizmente a triste realidade sobre a soma dos n termos de uma P_2 é que eu ainda não encontrei uma possível fórmula e pelo jeito mais ninguém pelo meu longo período de pesquisa. Tanto o termo geral e o produto acabam saindo de forma espontânea por causa da gloriosa transformação logarítmica, porém não conseguimos tirar dela a soma desejada.

Da mesma forma que um dos artigos que li sobre esse tema, convido o leitor à tentar encontrar uma possível fórmula para a soma, ou ao menos mostrar seu algoritmo de demonstração. Porque pode ser que a fórmula seja tão grande que seja mais interessante apenas o algoritmo para colocar numa máquina.

7 Análise Exponencial

Da mesma forma que encontramos f(n) e g(n) da fórmula do termo geral

$$w_n = w_1 \cdot q^{f(n)} \cdot \phi^{g(n)}$$

Conseguimos a fazer por substituição em cada exemplo relembrando que o expoente do q vai ser um polinômio de primeiro grau e o expoente do ϕ vai ser um polinômio de segundo grau

$$w_n = w_1 \cdot q^{an+b} \cdot \phi^{cn^2 + dn + e}$$

Para ficar não maçante vou pegar apenas uma P_2 de construtor $W(w_1, q, \phi)$ a prova do fato acima deixo aos leitores interessantes, mas já falo de antemão a necessidade de entender a análise polinomial de uma PA de ordem superior

$$w_1 = w_1 \cdot q^{a+b} \cdot \phi^{c+d+e}$$

$$\begin{cases} a+b=0 \\ c+d+e=0 \end{cases}$$

$$w_2 = w_1 q = w_1 \cdot q^{2a+b} \cdot \phi^{4c+2d+e}$$

$$\begin{cases} 2a+b=1\\ 4c+2d+e=0 \end{cases}$$

Das primeiras equações de cada sistema já podemos encontrar a, b

$$\begin{cases} a+b=0 \\ 2a+b=1 \end{cases} \Rightarrow a=1 \land b=-1$$

$$w_3 = w_1 q^2 \phi = w_1 \cdot q^2 \cdot \phi^{9c+3d+e}$$

Juntando todas as equações envolvendo o expoente de ϕ podemos finalmente achá-lo

$$\begin{cases} c+d+e=0 \\ 4c+2d+e=0 \\ 9c+3d+e=1 \end{cases} \Rightarrow \begin{cases} 3c+d=0 \\ 8c+2d=1 \end{cases} \Rightarrow c=\frac{1}{2} \land d=\frac{-3}{2} \land e=1$$

Assim anunciamos mais uma vez o termo geral de uma outra forma

$$w_n = w_1 \cdot q^{n-1} \cdot \phi^{\frac{(n-1)(n-2)}{2}}$$

Poderíamos fazer o mesmo para o produto dos n termos de uma P_2 porém não vejo motivação suficiente para cairmos em um problema de 6 variáveis com termo cúbico. Porém caso queira ver na prática a validade desse método funcionará como um belo de um exercício, e principalmente, se você quiser ver com mais profundidade esse método recomendo ler meu artigo sobre os tópicos extras de uma PA.

8 Estrutura de Formação

Até o momento não paramos para estudar a estrutura de formação a fundo de uma P_2 , no máximo olhamos a mesma com uma perspectiva alternativa por uma A_2 correspondente.

Para tal vou trabalhar com uma P_2 simbolizada por W com construtor $W(w_1, q, \phi)$

$$W = (w_1, w_2, \dots, w_n)$$

O significado de q é a primeira razão parcial consecutiva

$$q = \frac{w_2}{w_1}$$

Dai tiramos que $w_2 = w_1 \cdot q$

O significado de ϕ é a razão das razões parciais consecutivas

$$\phi = \frac{\frac{w_3}{w_2}}{\frac{w_2}{w_1}} = \frac{w_1 \cdot w_3}{w_2^2}$$

Dai tiramos que $w_3 = w_2^2 \phi/w_1$, substituindo $w_2 = w_1 \cdot q$

$$w_3 = \frac{w_1^2 q^2 \phi}{w_1} = w_1 q^2 \phi$$

Aplicando a definição de ϕ para w_4

$$\phi = \frac{w_4 \cdot w_2}{w_3^2}$$

Dai tiramos que $w_4 = w_3^2 \phi/w_2$, substituindo $w_2 = w_1 \cdot q$ e $w_3 = w_1 \cdot q^2 \cdot \phi$

$$w_4 = \frac{w_1^2 \cdot q^4 \cdot \phi^3}{w_1 \cdot q} = w_1 q^3 \phi^3$$

E assim por diante conseguimos definir todos os elementos de uma P_2 de forma construtiva, uma coisa interessante é que ainda podemos fazer um construtor alternativo para W da seguinte forma, $W(w_1, w_2, \phi)$. Já que implicitamente estamos dando as informações base do construtor considerado anteriormente.

De forma mais genérica ainda

$$\phi = \frac{w_{n+2} \cdot w_n}{w_{n+1}^2}$$
$$\therefore w_{n+2} = w_{n+1}^2 \phi / w_n$$

Agora vou provar o termo geral utilizando a definição formal recursiva, para entender por completo a estrutura da P_2

Demonstração. As informações necessárias e suficientes que temos é que, dado $W = W(w_1, q, \phi)$ uma P_2

$$\frac{w_2}{w_1} = q \wedge \frac{w_x}{w_{x-1}} = \frac{w_{x-1}}{w_{x-2}} \cdot \phi$$

A fórmula que queremos provar é $w_x = w_1 \cdot q^{x-1} \cdot \phi^{\frac{(x-1)(x-2)}{2}}$, temos duas hipotéses de indução (já que a segunda sentença pós conjunção demanda dois argumentos para achar w_x) e minimamente dois casos bases para podermos utilizar o que acabei de argumentar

Primeiramente vamos mostrar os casos base que são para w_1 e w_2 lembrando que $w_2 = w_1 \cdot q$ por definição

$$\begin{cases} w_1 \Rightarrow w_1 \cdot q^0 \cdot \phi^0 = w_1 \\ w_2 \Rightarrow w_1 \cdot q^1 \cdot \phi^0 = w_1 q = w_2 \end{cases}$$

Considerando que seja válida a fórmula para w_x e w_{x+1}

$$\begin{cases} w_x = w_1 \cdot q^{x-1} \cdot \phi^{\frac{(x-1)(x-2)}{2}} \\ w_{x+1} = w_1 \cdot q^x \cdot \phi^{\frac{x(x-1)}{2}} \end{cases}$$

Vamos mostrar então que ela será válida para w_{x+2}

$$w_{x+2} = \frac{w_{x+1}^2 \phi}{w_x}$$

$$= \frac{w_1^2 \cdot q^{2x} \cdot \phi^{x(x-1)+1}}{w_1 \cdot q^{x-1} \cdot \phi^{\frac{(x-1)(x-2)}{2}}}$$

$$= w_1 \cdot q^{x+1} \cdot \phi^{\frac{x(x+1)}{2}}$$

Provando assim que se os casos base forem verdadeiros e as fórmulas válidas para w_x e w_{x+1} , ela também terá de ser para w_{x+2} , dado $x \in C_n = Dom(W)$

9 Estruturação em Pirâmide

Para finalizar esse artigo gostaria de mostrar a estruturação em pirâmide de uma P_2 para finalmente enunciar o teorema geral desse paper.

Vamos começar escrevendo

$$W = (w_1, w_1 \cdot q, w_1 \cdot q^2 \cdot \phi, w_1 \cdot q^3 \cdot \phi^3, \dots, w_n)$$

Isolando a influencia de q termo a termo montamos a sequencia S_q

$$S_q = (1, q, q^2, q^3, \dots, q^{n-1})$$

Fazendo o mesmo para a influencia de ϕ montamos a S_{ϕ}

$$S_{\phi} = \left(1, 1, \phi, \phi^3, \phi^6, \dots, \phi^{\frac{(n-1)(n-2)}{2}}\right)$$

Utilizando a noção de termo geral de S_q e S_ϕ vemos W como

$$w_n = w_1 \cdot s_{q_n} \cdot s_{\phi_n}$$

Agora perceba que S_q é uma P_1 primitiva $S_q(1,q)$ e S_{ϕ} é uma P_2 primitiva $S_{\phi}(1,1,\phi)$

$$W(w_1, q, \phi) = w_1(S_q(1, q) \odot S_{\phi}(1, 1, \phi))$$

Onde \odot é uma operação vetor-vetor resultando em um outro vetor, multiplicando as coordenadas termo a termo, semelhante ao processo do produto escalar, porém nesse caso não somamos nada e retornamos um vetor de mesmo tamanho dos operandos.

O fato de eu chamar de estruturação em pirâmide é que toda construção de uma P_2 vai envolver uma sequência de influência como S_q e S_ϕ formada por uma P_1 e uma P_2 primitivas. E caso fizéssemos um caso análogo P_3 , P_4 até P_n , teríamos formados sequências P_1 , P_2 , P_3 , ... P_n de influencia também primitivas.

Dessa forma o primeiro nível da pirâmide é a própria P_n com as suas razões parciais em uma P_{n-1} representando o nível imediatamente inferior, até chegarmos ao caso base no qual as razões parciais de uma P_1 formam uma sequencia estacionária $s(x) = a \in \mathbb{R}$, $\forall x \in C_n$; representando também a base de nossa pirâmide.

E essa analogia é bastante importante porque ela mostra como é necessário o conhecimento de todas P_k com k < n para determinar por completo as fórmulas desejadas para uma P_n genérica, exatamente como funciona uma pirâmide, se você não conhecer como descer dela, eternamente ficará apenas com as informações contidas na parte de cima.

Assim, posso enunciar o último teorema e o mais importante, porque edifica todas as PGs de ordem superior e mostra a importância que uma simples P_1 e P_2 tem para os casos mais complexos possíveis de P_n .

Teorema 13. Seja ζ_n uma progressão geométrica de n-ésima ordem, a sequência das razões parciais consecutivas será uma progressão geométrica ζ_{n-1} de ordem (n-1). Definindo como base da recursão $\zeta_0 = (a, a, a, \ldots, a)$ onde a é uma constante real necessariamente não nula.

Aqui fica extremamente claro que você precisa conhecer tudo possível de ζ_k , de k indo de 0 até n, para manipular com clareza as fórmulas de ζ_n ; devido ao teorema recursivo acima.

Outro desdobramento muito interessante desse teorema junto com a transformação logarítmica é que caso pegamos $\nabla \zeta_n$, já mostrado ser uma A_n , montando a sequência das razões parciais consecutivas dessa última sequência teremos $\nabla \zeta_{n-1}$ uma A_{n-1} .

Ou seja, o operador ∇ transforma a pirâmide geométrica numa pirâmide aritmética como é dito nesse corolário

Corolário 13.1. Seja ζ_n uma P_n , ao criarmos $\nabla \zeta_n$ equivalente logaritmo de ζ_n obtemos uma A_n ; esse fato junto ao equivalente Teorema 13 para progressões aritméticas, confirmam que a sequência das razões parciais consecutivas de $\nabla \zeta_n$ será $\nabla \zeta_{n-1}$ uma A_{n-1} .

Se quisermos formalizar melhor, criarei o operador \dagger que retorna a sequência das razões parciais consecutivas tanto de uma P_n quanto de uma A_n .

Logo, os operadores \dagger e ∇ comutam na composição e é isso que o *corolário 13* junto com o equivalente ao *teorema 13* para progressões aritméticas nos dizem, e isso que garente essa transformação de pirâmide geométrica em pirâmide aritmética.

E a última coisa a se fazer com † devido ao teorema 13 é sua formalização recursiva

$$\underbrace{\dagger \circ \dagger \circ \dagger \circ \cdots \circ \dagger}_{n}(\zeta_{n}) = \zeta_{0}$$

$$\dagger^{(n)}(\zeta_{n}) = \zeta_{0}$$

Ou melhor ainda

$$\boxed{\dot{\mathbf{T}}^{(k)}(\zeta_n) = \zeta_{k-n}, \ \forall 0 < k < n}$$

No qual o índice n da expressão acima representa o número de composições com o mesmo operador feitas